

Procedure below:

1. convert number representation to number format using excel properties
2. copy data from data sheet into

Genuine into column Genuine and i16.dat imposter in column imposter
3. Classify genuine and imposter into range in this case 0-0.1,0.1-0.2 etc

As shown in excel sheet column D GenuineClass, ImposterClass
Formulae used:
For GenuineClass (range in column D in excel sheet, based on Genuine Score of Column B)
$=\operatorname{IF}(A N D(B: B>=0, B: B<=0.1), " 0.1 ", \operatorname{IF}(A N D(B: B>0.1, B: B<=0.2), " 0.2 ", \operatorname{IF}(A N D(B: B>0.2, B: B<=0.3), " 0.3 "$, IF(AND(B:B>0.3,B:B<=0.4),"0.4", IF(AND(B:B>0.4,B:B<=0.5),"0.5", IF(AND(B:B>0.5,B:B<=0.6),"0.6", $\operatorname{IF}(A N D(B: B>0.6, B: B<=0.7), " 0.7 ", \operatorname{IF}(A N D(B: B>0.7, B: B<=0.8), " 0.8 ", \operatorname{IF}(A N D(B: B>0.8, B: B<=0.9), " 0.9 "$, " 0.1 " $)$)))))))
For GenuineClass (range in column C in excel sheet, based on Imposter Score of Column C)
$=1 F(A N D(C: C>=0, \mathrm{C}: \mathrm{C}<=0.1), " 0.1 "$,IF(AND(C:C>0.1,C:C<=0.2),"0.2" ,IF(AND(C:C>0.2,C:C<=0.3),"0.3", IF(AND(C:C>0.3,C:C<=0.4),"0.4", IF(AND(C:C>0.4,C:C<=0.5),"0.5", IF(AND(C:C>0.5,C:C<=0.6),"0.6", IF(AND(C:C>0.6,C:C<=0.7),"0.7", IF(AND(C:C>0.7,C:C<=0.8),"0.8", IF(AND(C:C>0.8,C:C<=0.9),"0.9", "0.1"))))))))
4. Count the classification for each Imposter and Genuine Imposter shown in Column F

For $0.0=C O U N T I F(E: E, " 0.0 ")$, For $0.1=C O U N T I F(E: E, " 0.1 ")$.
Genuine:
For $0.1=C O U N T I F\left(D: D, " 0.1^{\prime \prime}\right)$, for $0.2=C O U N T I F\left(D: D, " 0.2^{\prime \prime}\right)$, and so on..
Draw Scatter curve : Series Diagonal, plot values (Scale X,ScaleY) as below scaleX scaleY
$0 \quad 0$
0.1110
$0.2 \quad 220$
$0.3 \quad 330$
0.4440
$0.5 \quad 550$
$0.6 \quad 660$
$0.7 \quad 770$
$0.8 \quad 880$
0.9990

11100

Similary draw values of imposter and Genuine as counted :
So Add 2 more series by name Imposter, Genuine

	X - Axis	Y-axis	
imposter	scaleX	scaleY	genuine
0	0	0	0
374	0.1	110	53
175	0.2	220	46
185	0.3	330	65
155	0.4	440	82
73	0.5	550	135
30	0.6	660	166
7	0.7	770	185
1	0.8	880	206
0	0.9	990	195
0	1	1100	1067
Sum:1000	5.5	6050	$\mathbf{2 2 0 0}$

We get following curve:

Question 2:
FP Rate = count(interval FP)/Total FP
TP Rate= count(interval TP count)/Total TP
We get this table Using this score we calculate accumulated FP, TP rate

scaleX	scaleY	FPRate	TPRate	imposter	genuine	Acc FP	Acc TP
$\mathbf{0}$	0	0	0	0	0	0	0
$\mathbf{0 . 1}$	0.1	0.374	0.02409	374	53	0.374	0.024091
$\mathbf{0 . 2}$	0.2	0.175	0.02091	175	46	0.549	0.045
$\mathbf{0 . 3}$	0.3	0.185	0.02955	185	65	0.734	0.074545
$\mathbf{0 . 4}$	0.4	0.155	0.03727	155	82	0.889	0.111818
$\mathbf{0 . 5}$	0.5	0.073	0.06136	73	135	0.962	0.173182
$\mathbf{0 . 6}$	0.6	0.03	0.07545	30	166	0.992	0.248636
$\mathbf{0 . 7}$	0.7	0.007	0.08409	7	185	0.999	0.332727
$\mathbf{0 . 8}$	0.8	0.001	0.09364	1	206	1	0.426364
$\mathbf{0 . 9}$	0.9	0	0.08864	0	195	1	0.515
$\mathbf{1}$	1	0	0.485	0	1067	1	1
				1000	2200	1	1

We get curve:

ROC Curve Question 2

Acc FP	Acc TP
0	0
0.374	0.024091
0.549	0.045
0.734	0.074545
0.889	0.111818
0.962	0.173182
0.992	0.248636
0.999	0.332727
1	0.426364
1	0.515
1	1
1	1

3. Determine the EER
$E E R=n m / P N$

The point where the FMR curve and FNMR curve intersect is known as the equal errorrate (EER). It is called this because at this threshold, the FMR and FNMR are equal. With respect to the score distributions, the EER occurs at the threshold where thearea under (i.e. the integration of) the genuine distribution $<t$ equals the area under theimpostor distribution $\geq \mathrm{t}$.
Point (0.1,0.9)

\mathbf{y}		scaleX	scaleY	FP Rate	TP Rate
	1	0	0	0	0

$\mathbf{0 . 9}$	0.1	0.1	0.374	0.0240909
$\mathbf{0 . 8}$	0.2	0.2	0.549	0.045
$\mathbf{0 . 7}$	0.3	0.3	0.734	0.0745455
$\mathbf{0 . 6}$	0.4	0.4	0.889	0.1118182
$\mathbf{0 . 5}$	0.5	0.5	0.962	0.1731818
$\mathbf{0 . 4}$	0.6	0.6	0.992	0.2486364
$\mathbf{0 . 3}$	0.7	0.7	0.999	0.3327273
$\mathbf{0 . 2}$	0.8	0.8	1	0.4263636
$\mathbf{0 . 1}$	0.9	0.9	1	0.515
$\mathbf{0}$	1	1	1	1

4. If the cost of a false accept is 10 euro and a false reject is 30 euro, estimate a suitable operating point on the ROC curve that minimises the overall cost. Assume equal apriori probabilities.

scaleX	scaleY	FPRate	TPRate	imposter	genuine	Acc FP	Acc TP
$\mathbf{0}$	0	0	0	0	0	0	0
$\mathbf{0 . 1}$	0.1	0.374	0.02409	374	53	0.374	0.024091
$\mathbf{0 . 2}$	0.2	0.175	0.02091	175	46	0.549	0.045
$\mathbf{0 . 3}$	0.3	0.185	0.02955	185	65	0.734	0.074545
$\mathbf{0 . 4}$	0.4	0.155	0.03727	155	82	0.889	0.111818
$\mathbf{0 . 5}$	0.5	0.073	0.06136	73	135	0.962	0.173182
$\mathbf{0 . 6}$	0.6	0.03	0.07545	30	166	0.992	0.248636
$\mathbf{0 . 7}$	0.7	0.007	0.08409	7	185	0.999	0.332727
$\mathbf{0 . 8}$	0.8	0.001	0.09364	1	206	1	0.426364
$\mathbf{0 . 9}$	0.9	0	0.08864	0	195	1	0.515
$\mathbf{1}$	1	0	0.485	0	1067	1	1
				1000	2200	1	1

= Consider a scenario in
which negatives outnumber positives by 10 to 1 , but false positives and false negatives have equal cost. By Eq. (1) $m=10$, and the most northwest line of slope $m=10$ is a, tangent to classifier A, which would be the best performing classifier for these conditions.
Consider another scenario in which the positive and negative example populations are evenly balanced but a false negative is 10 times as expensive as a false positive. By Eq. (1) $m=1 / 10$. The most northwest line of slope $1 /$ 10 would be line b, tangent to classifier C. C is the optimal classifier for these conditions.

